APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Apr. 2009, p. 2590-2597

0099-2240/09/$08.00+0  doi:10.1128/AEM.02167-08

Vol. 75, No. 8

Copyright © 2009, American Society for Microbiology. All Rights Reserved.

Dynamic Model of Heat Inactivation Kinetics for Bacterial Adaptation’
Maria G. Corradini'* and Micha Peleg”

Instituto de Tecnologia, Facultad de Ingenieria y Ciencias Exactas, Universidad Argentina de la Empresa, Ciudad de Buenos Aires,
Argentina," and Department of Food Science, 228 Chenoweth Lab, 100 Holdsworth Way, University of Massachusetts,
Ambherst, Massachusetts 01003>

Received 18 September 2008/Accepted 2 February 2009

The Weibullian-log logistic (WeLL) inactivation model was modified to account for heat adaptation by
introducing a logistic adaptation factor, which rendered its “rate parameter” a function of both temper-
ature and heating rate. The resulting model is consistent with the observation that adaptation is primarily
noticeable in slow heat processes in which the cells are exposed to sublethal temperatures for a sufficiently
long time. Dynamic survival patterns generated with the proposed model were in general agreement with
those of Escherichia coli and Listeria monocytogenes as reported in the literature. Although the modified
model’s rate equation has a cumbersome appearance, especially for thermal processes having a variable
heating rate, it can be solved numerically with commercial mathematical software. The dynamic model has
five survival/adaptation parameters whose determination will require a large experimental database.
However, with assumed or estimated parameter values, the model can simulate survival patterns of
adapting pathogens in cooked foods that can be used in risk assessment and the establishment of safe

preparation conditions.

Combined with heat transfer data or models, microbial sur-
vival kinetics, especially of bacteria or spores, is extensively
used to determine the safety of industrial heat preservation
processes like canning, extant or planned. The same is true for
milder heat processes such as milk and fruit pasteurization.
However, survival models are also a valuable tool to assess the
safety of prepared foods, especially those made of raw meats,
poultry, and eggs, where surviving pathogens can be a public
health issue.

The heat resistance of a bacterium, or any other microor-
ganism, is almost always determined from a set of its isother-
mal survival curves, recorded at several lethal temperatures.
The kinetic models, which define the heat resistance parame-
ters, may vary, but the calculation procedure itself is usually
the same. First, the experimental isothermal survival data are
fitted with what is known as the “primary model.” Once fitted,
the temperature dependence of this primary model’s coeffi-
cients is described by what is known as the “secondary model.”
When combined with a temperature profile expression, 7(¢),
and incorporated into the inactivation rate equation, the result
is a “tertiary model,” which enables its user to predict the
organism’s survival curve under any static or dynamic (i.e.,
nonisothermal) conditions.

The traditional log-linear (“first-order kinetic”) model is the
best-known primary survival model, and it is still widely used in
sterility calculations in the food, pharmaceutical, and other
industries. Traditionally, it has been assumed that the D value
calculated with this model has a log-linear temperature depen-
dence or, alternatively, that the temperature effect on the ex-
ponential rate constant, k, the D value’s reciprocal, follows the
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Arrhenius equation. However, accumulating experimental ev-
idence in recent years indicates that bacterial heat inactivation
only rarely follows the first-order kinetics and that there is no
reason that it should (3, 18, 29). Nonlinear survival curves can
be described by a variety of mathematical models (6). Perhaps
the most frequently used in recent years is the Weibullian
model, of which the traditional log-linear model is a special
case—see below.

Regardless of the log-linearity issue, none of the above-
mentioned models accounts for adaptation, the ability of cer-
tain bacterial cells to adjust their metabolism in response to
stress in order to increase their survivability (2, 10, 26, 27, 28).
A notable example is Escherichia coli. Its cells can produce
“heat shock proteins,” which help them to survive mild heat
treatments (1, 11). Other organisms, Salmonella enterica and
Bacillus cereus among them, can also develop defensive mech-
anisms that help them to survive in an acidic environment (8,
9, 13). Whether adaptation allows the cells to avoid injury or to
repair damage once it has occurred, or both, should not con-
cern us here. (Injury and recovery, although related, are a
separate issue, one which is amply discussed in the literature.
Their quantitative aspects and mathematical modeling are dis-
cussed elsewhere [5].)

The cells’ ability to augment their resistance is not unlim-
ited, and it takes time for the cells to activate the protective
system and synthesize its chemical elements (10, 12). Con-
sequently, the effect of heat adaptation on an organism’s
survival pattern becomes measurable only at or at slightly
above what’s known as the “sublethal” temperature range.
Under dynamic conditions, therefore, adaptation can be
detected only when the heating rate is sufficiently low to
allow the cells to respond metabolically to the heat stress
prior to their destruction.

Several investigators have reported and discussed the
quantitative aspects of adaptation (25, 27, 28). When it
occurs, adaptation is noticed as a gap between survival
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curves determined at low heating rates and those predicted
by kinetic models whose parameters had been determined at
high lethal temperatures (7, 8, 9, 27, 28). The question is
how to modify the inactivation kinetic model so that it can
properly account for adaptation at low heating rates while
maintaining its predictive ability at high rates and clearly
lethal temperatures. Stasiewicz et al. (25) have recently
given a partial answer to this question. They started with the
Weibullian inactivation model (see below) and assumed that
its rate parameter’s temperature dependence follows a mod-
ified version of the Arrhenius equation. Using this model
and experimental data for Salmonella bacteria, they showed
that a “pathway-dependent model” is more reliable than a
“state-dependent model.”

The objectives of our work were to develop a variant of the
Weibullian-log logistic (WeLL) inactivation model to account
for dynamic adaptation and to demonstrate its applicability
with reported adaptive survival patterns exhibited by Esche-
richia coli and Listeria monocytogenes, two organisms of food
safety concern.

Theoretical background. (i) Weibullian inactivation without
adaptation. Published isothermal survival curves of Escherichia
coli, Salmonella, and other pathogens indicate that their heat
inactivation does not follow the traditionally assumed first-
order kinetics and that their curvilinear semilogarithmic sur-
vival curves can be described by the Weibullian model (14, 15,
16, 23, 29).

A convenient way to write this model is.

logyy S(t) = —b(T)¢"™ (1)

where S(¢) is the momentary (“instantaneous”) survival ra-
tio, i.e., N(t)/N,, where N(¢) and N, are the momentary and
initial counts and b(T) and n(7T) are temperature-dependent
coefficients. According to this model, n(7) > 1 means that
the semilogarithmic survival curve has downward concavity
and n(T) < 1 means that the curve has upward concavity
(“tailing”). The log-linear model is a special case of equa-
tion 1 where n(7) = 1.0. Thus, the discussion below will be
relevant to both linear and nonlinear heat inactivation pat-
terns.

For several organisms, the power n(7) in equation 1 was
found to be practically constant or could be assigned a fixed
numerical value with only minor effect on the model’s fit (6, 14,
16, 22). We will assume that this is true and for what follows
use the model with n(T) = n, i.e.,

logio @) = —b(T)¢" ®)

The temperature dependence of the “rate parameter,” b(T),
can be described by the empirical log-logistic model (16,
17, 20):

b(T) = In{l + exp[k(T — T,)]} 3)

where T,. marks the temperature level of the inactivation’s
onset and k is, approximately, the slope of the b(T)-versus-T
relationship at 7 >> T.. According to this model, at 7 > T,
b(T) ~ k(T — T,), while at T << T, b(T) ~ 0, i.e., no mea-
surable inactivation takes place. (Unlike the Arrhenius equa-
tion and its variants, the log-logistic model makes a clear dis-

INACTIVATION AND ADAPTATION 2591

tinction between lethal and nonlethal temperatures and it does
not require the temperature scale compression [18].)

We assume that under dynamic heating conditions, the
momentary inactivation rate is the rate that corresponds to
the momentary temperature, at a time that corresponds to
the momentary survival ratio (18, 21, 22). Thus, when the
inactivation pattern follows equation 2 as a model, the mo-
mentary isothermal survival rate, d log,, S(¢)/dt, at a given
temperature 7 is

d logyy S(¢)
EE 2 b (4)

According to equation 2, the time ¢*, which corresponds to the
momentary logarithmic survival ratio, log,, S(¢), is
1
logyy S(2) |
« _ | 108w (®) )
b(T)

Combining equations 4 and 5 and allowing the temperature to
be a function of time, i.e., T = T(¢), renders the survival rate
equation (18, 21, 22)

n—1

{ logyo S(Z)}T

dlogy S()
BT

S = T (6)
When b(T) is defined by equation 3, equation 6 becomes the
WeLL model:

dl%fs(t) = “In{l + explk[T() — T.1}} * n -
loggo (1) o
{ In{1 + explk(T(0) — TCJ}}] ™

The WeLL model (equation 7) is an ordinary differential equa-
tion that can be solved numerically for almost any conceivable
practical temperature profile 7(r). We used Mathematica 6
(Wolfram Research, Champaign, IL) for this purpose, but
other commercial programs such as Maple or MatLab will also
work. (Equation 7 can also be converted into a difference
equation and solved with general-purpose software like MS
Excel [19].)

The validity of the WeLL model has been demonstrated by
its ability to correctly predict dynamic inactivation patterns
from experimental isothermal survival data (6, 16, 24) or from
dynamic data not used in its parameter calculations (4, 17, 20).

(ii) Adaptation under constant heating rate. Consider an
organism whose heat inactivation kinetics follows the WeLL
model (equations 2 to 7) being heated under time-temperature
conditions that do not allow growth. For simplicity, we will
assume that n in the inactivation model is practically unaf-
fected by whether adaptation takes place or not. If this assump-
tion is justified, then adaptation will influence only the magni-
tude of the Weibullian rate parameter, b(7), making it heating
rate dependent.

Let us start with the simple case of constant rate heating, i.e.,
dT(t)/dt = v. In order to express b(T) as a function of the
heating rate too, i.e., as b(7,v), we have to take into account the
following facts. (i) Adaptation occurs primarily in the sublethal
temperature range, i.e., before the onset of the massive mor-
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FIG. 1. Schematic view of the construction of the (logistic) adaptation factor, f,q.,(75v), using equation 8 as a model.

tality of the cells. (ii) When adaptation occurs, the lower the
heating rate is, the longer the cells remain at temperatures that
allow them to activate their protective mechanism(s). There-
fore, the lower the heating rate, the greater is the adaptation
effect on the organism’s survival pattern. (iii) The increased
heat resistance caused by adaptation has an upper limit set by
physical considerations. In other words, even at rates low
enough to be considered isothermal, i.e., where d7(¢)/dt — 0,
the organism cannot become absolutely heat resistant. (iv) At
high heating rates, the adapted cells’ heat resistance ap-
proaches that of the unadapted cells. (v) Adapted cells do not
become more heat sensitive at high temperature or with fast
heating. Note that the above five considerations are not con-
tingent on any specific mechanism(s) operating at the molec-
ular and cellular level. They also do not require that the pro-
tective mechanism(s) remain unchanged over the whole
pertinent temperature range.

The task now is to find a mathematical expression of b(7,v)
whose insertion into the inactivation rate equation will pro-
duce survival curves that satisfy the five conditions and for
which the resulting model will be consistent with experimental
observations. More specifically, the sought-for expression
b(Ty), like the original b(T) from which it will be derived,
should be zero or approximately zero at low temperatures
where no inactivation takes place and sensitive to v only within
a certain intermediate (sublethal) temperature range. At high
lethal temperatures, where adaptation is impossible regardless
of the heating rate, the value of b(7,v) should coincide with
that of the original b(T).

A way to formulate such an expression is to multiply the
original Weibullian rate parameter b(T) by a logistic adapta-
tion factor, f,4,,(T3v), of the kind depicted schematically in
Fig. 1., ie.,

1
fadapt(T’V) N 1+ exp{kadapt[Tc adapt(v) - T]} (8)

In this expression, k. is a constant marking the steepness of

adapt

the adaptation factor [f,4,,,(7,v)]-versus-temperature relation-
ship around the inflection point 7. ,q..(v) (Fig. 1) and which
accounts for the increase in heat resistance of the adapted cells
expressed in terms of “pushing” the original 7, to a higher
temperature, i.€., T, ,qap(V) = T, as shown in Fig. 2. Note that
T, ,qapt(v) must decrease with v. It can be, for example,

Tc adapt(v) = Tlimit —a-v (9)

where a is a proportionality constant and T};,; is a marker of
the temperature at which the adapted cells start to succumb.
Combining the “adaptation factor” (equation 8) with the orig-
inal “rate parameter” (equation 3) yields its adapted version or
the heating rate-dependent Weibullian rate parameter:

Fast Heating -
No adaptation

b(T)

Increasing

Decreasing heating rate -
heating rate

Increasing adaptation

Temperature

FIG. 2. Schematic view of how an organism’s adaptation at suble-
thal temperatures and low heating rates affects its Weibullian inacti-
vation’s rate parameter, b(T). (The curves shown were all produced
with equation 10 as a model.)
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In{1 + exp[k(T — T.)]}
1 + exp{kadapt[Tc adapt(v) - T]} (10)

b(Tw) =

Simulated b(T,v)-versus-temperature and heating rate rela-
tionships are also shown in Fig. 2. The figure demonstrates how
the expression complies with the stated requirements at least
qualitatively. For example, as the heating rate v increases, the
distinction between b(7,v) and b(T) progressively disappears.
However, even when v — o, b(T,v) cannot be larger than b(7T)
because the term 1 + exp{k,qapd Te adape(v) — T]} can never be
less than 1.0. At the other extreme, even when v — 0, b(T,v)
cannot remain ~0 indefinitely and its value will eventually rise
as the temperature increases. According to the simplistic
model that we have used for the demonstration (equation 9), it
must rise at about T};,,;, or at another definite temperature,
had a different T, ,q,,(v) term been used.

When the newly defined rate parameter in the form of
b[T(t),v] is inserted into equation 7, the result is the inactiva-
tion rate model

dlogy S() In{1 + exp{k[T(t) — T ]}
dt a 1+ eXp{kadapt[Tc adapt(v) - T(t)]} e
10g10 S(t) nn;l
In{L + explk[T(0) — T.]}} an

1+ exp{kadapt[Tc adapt(v) - T(t)]}

Although equation 11 has an even more cumbersome appear-
ance than equation 7, it is still an ordinary differential equation
that can be solved numerically to produce the survival curve
log,, S(f)-versus-time relationship. Equation 11 can be used to
generate nonisothermal survival curves that correspond to a
variety of constant heating rates. Examples are given in Fig. 3.
They demonstrate how adaptation delays the inactivation’s
onset at low heating rates and how its effect diminishes as the
heating rate increases. Although the simulated survival curves
shown in this figure were all created with a model having the
simplistic term 7;,,,;; — a * v (from equation 9) in its formula,
they still capture the essence of the adaptation phenomenon
and how it shifts the survival curve. Note that a survival curve’s
shift to the right means increased heat resistance while a shift
to the left increases sensitivity. Figure 3 also provides visual
demonstration of why an inactivation model derived from
survival data obtained at high lethal temperatures fails to
predict survival patterns at sublethal temperatures if the
organism in question is capable of adaptation. The opposite
is also true. An inactivation model for an adaptive organism
determined from survival data obtained at low temperatures
will fail to predict inactivation patterns at high temperatures
and high heating rates. In that case, however, the predicted
survival curves will be shifted to the right of the correct ones
instead of to the left.

(iii) Adaptation under arbitrary heating rate regimens. If
the outlined principles are valid, then they should apply to any
monotonic rise in temperature and not only to constant rate
heating. However, in order to account for a variable rate, the
constant heating rate v in equation 11 ought to be replaced by
the momentary (“instantaneous”) heating rate, d7(¢)/dt, trans-
forming the rate equation into
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FIG. 3. Simulated constant heating rate temperature profiles and
corresponding survival curves. The solid curves were generated with a
model that does not take adaptation into account (equation 7), and the
dashed lines were generated with a model that does (equation 11).
Note that, according to the model, an organism’s adaptation is primar-
ily manifested at low heating rates.

dlogy S@) In{1 + exp{k[T(t) — T.]}}
i dT(0) e
1+ exp{kadapt[Tc adapt<7> - T([)]}
log,, S(t) (12)

In{1 + exp{k[T(¢) — T.]}}

dT(t)
1+ exp{k‘ddapt[Tv adapl( dt ) - T(t):|}

This is a more elaborate model than equation 11, but it too can be
solved by Mathematica for a large variety of heating regimens.
Examples of temperature histories (profiles) and corresponding
survival curves generated with equation 12 as a model are given in
Fig. 4. They demonstrate that the rate equation’s complexity is no
hindrance to its numerical solution by modern mathematical soft-
ware. They also show that, as the heating rate is increased, the
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FIG. 4. Simulated variable rate temperature profiles and corre-
sponding survival curves. The solid curves were generated with a
model that does not take adaptation into account (equation 7), and the
dashed lines were generated with a model that does (equation 12).
Note that, according to the model, an organism’s adaptation is primar-
ily manifested under slow heating regimens and that in a monotonic
temperature rise the inactivation rate equation’s complexity does not
affect the Mathematica program’s ability to solve it numerically.

survival curve of cells capable of adaptation can become indistin-
guishable from that of cells that are not.

Since the constant rate heating model (equation 11) is just a
special case of equation 12 where d7(t)/dt = v, the latter can be
used for both linear and nonlinear heating. Another special
case is an isothermal heat treatment where d7(¢)/dt = 0, in
which case equation 12 is reduced to

dlog, S(t) In{1 + exp[k(T — T.)]}
dt a 1+ eXp[kadapl(T]imit - T)] e
logy, S(t) E . -
“n{l + explk(T(4) — T)]} (13)

1+ exp[kadapt[Tlimit - T]]
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FIG. 5. Six temperature profiles of heat treatments used to inacti-
vate E. coli. The original data are from the work of Valdramidis et al.
27).

Comparison of the model with published experimental ob-
servations. (i) Escherichia coli. Six nonisothermal temperature
profiles and corresponding survival data of E. coli K-12
MG1655, originally reported by Valdramidis et al. (27, 28), are
shown in Fig. 5 and 6, respectively. The treatments consisted of
a period of heating at a constant rate to reach 55°C, at which
point this temperature was maintained until the process was
completed after 6 hours. The difference between the treat-
ments was the heating rate and (consequently) the holding
time at 55°C. This kind of temperature profile can be described
by the empirical model

T(t) = 55 — In{1 + exp[v(tss — 1)1} (14)

where v is the heating rate at the initial stage in °C/min and 75
is the time in min to reach the temperature 55°C. The authors
of the original publication also determined the organism’s iso-
thermal inactivation curves at various temperatures in the
range of 52 to 60.6°C, from which its WeLL model’s parame-
ters n, k, and 7T, could be determined. However, these param-
eters were determined only from data collected at tempera-
tures higher than 54°C, i.e., lethal to the organism. These were
then inserted into the model’s equation (equation 7) together
with the appropriate temperature profile term (equation 14) in
an attempt to predict the survival curve in each of the treat-
ments. The results are shown as solid lines in Fig. 6. Because of
the organism’s ability to adapt at sublethal temperatures, all
the predictions based on the unmodified model were off mark.
As expected and as stressed by Valdramidis et al. (28), they
were all to the left of the actual survival curve. Also, the
magnitude of the shift increased as the heating rate was de-
creased, again in agreement with the model’s prediction. (Note
that the time scales of the plots in Fig. 6 are not the same.)
Fitting the experimental data by conventional regression meth-
ods using equation 12 as a model is not a viable option in this
case. This is primarily because the model’s equation has five
adjustable parameters. The problem is further aggravated by
the inevitable experimental scatter. However, by letting n as-
sume a representative value and fixing that of a (equation 9),
it was possible to get rough estimates of the other inactivation/
adaptation parameters, namely, K, Tj;;» and k,g,,,,> by using a
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FIG. 6. Survival patterns of E. coli K-12 MG1655 exposed to the thermal treatments whose temperature profiles are shown in Fig. 5. The solid
curves were generated with a model that does not take adaptation into account (equation 7), and the dashed ones were generated with a model
that does (equation 12). The experimental data shown are from the work of Valdramidis et al. (28). Note that the time scales of the survival curves

are different.

minimization method offered by Mathematica. They were in-
serted into the model equation (equation 12) to produce the
survival curves corrected for adaptation, which are shown as
dashed lines in the figure. (The parameters’ approximate values
were a = 2.0 to 2.5 min, n = 1.6,k = 0.02 t0 0.3°C™ ", T};ie = 58
to 84°C, and kg, = 0.2 to 1.3°C™! with two clear outliers.)
Because alteration of one parameter in order to minimize the
mean square error is compensated for by changes in the other
parameters’ magnitudes, some of the estimates varied within a
wide range. However, despite these limitations and the grossly
oversimplified assumption that the adaptation could be ac-
counted for by equation 9, the “correct survival curves” were at
least visually in agreement with those actually observed (Fig.
6). In other words, despite the crudeness of the model and its
parameter estimation procedure, it still captured the essence
of the organism’s adaptation and how it is manifested in slow
and fast heating regimens.

(ii) Listeria monocytogenes. Three constant heating rate tem-
perature profiles and corresponding survival data for L. mono-
cytogenes at pH 7.4 and 5.5 are shown in Fig. 7 and 8, respec-
tively. The original authors of the data are Hassani et al. (8§, 9,
10), who also reported the organism’s isothermal survival pat-
terns at these two pH levels (10). As before, the WeLL model’s
parameters were calculated using data obtained at clearly le-
thal temperatures, i.e., in the range of 54 to 62°C. These were
inserted into equation 7 with the temperature profile terms to
produce the survival curves shown as solid lines in Fig. 8. As in

the case of E. coli, all the curves predicted without taking
adaptation into account were to the left of the ones observed
experimentally. Also, as expected, the gap between them de-
creased as the heating rate increased. (Again, note that the
time scales of the plots are very different.) This was observed at
both pH levels. As could be expected, lowering the pH inten-
sified the heat’s inhibitory effect, but the data at hand were
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FIG. 7. Three temperature profiles of heat treatments used to in-
activate Listeria monocytogenes. The original data are from the work of
Hassani et al. (8).
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FIG. 8. Survival patterns of Listeria monocytogenes exposed to the thermal treatments whose profiles are shown in Fig. 7. The solid curves were
generated with a model that does not take adaptation into account (equation 7), and the dashed ones were generated with a model that does
(equation 12). The original data are from the work of Hassani et al. (8). Note that the time scales of the survival curves are not the same.

insufficient to determine whether it also had a significant effect
on the organism’s adaptation pattern.

As before, setting n at a representative value and fixing that
of a enabled us to estimate the other model parameters with a
minimization procedure. Once they were estimated, we could
generate the survival curves corrected for adaptation using
equation 11 as a model. The approximate values of the param-
eters were @ = 2 min~ ', n = 0.8 for pH 7.4 and 1.1 for pH 5.5,
k = 0.3 to 0.7°C~" with one clear outlier, Tj;;, = 56 to 60°C,
and kg, = 0.1 t0 0.8°C~ ! with one clear outlier. The survival
curves corrected for adaptation are shown as dashed lines in
Fig. 8. In all six cases, they were in almost perfect agreement
with the actual data. The calculated values of k and kg,
varied considerably and showed no trends. T}, in contrast,
varied within the narrow range of 56 to 60°C, which is probably
consistent with the upper limit of the organism’s sublethal
temperature range.

Perhaps with the exception of Tj;,;, the exact meaning of
the estimated parameters’ magnitudes is unclear at this point.
However, they might indicate their expected order of magni-
tude. Like those of E. coli, the published experimental Listeria
data used in the analysis had not been originally intended to
test the proposed adaptation model. Yet, the same model that
fitted the E. coli data also fitted the six experimental survival
curves of Listeria. This suggests that the proposed mathemat-
ical model indeed captured the two organisms’ adaptation pat-

terns despite the different concavities of their isothermal sur-
vival curves, i.e.,, n = 1.6 versus 0.8 or 1.1, respectively. It
should be added that conventional statistical fit measures were
not applicable here and are therefore not reported. This is
because one of the parameters, a, was adjusted. Also, the
deviation of the corrected curves from those where adaptation
had not been taken into account was systematic rather than
random and its magnitude varied with the rate according to the
prediction of the model itself.

Concluding remarks. Pathogen adaptation has a direct im-
pact on the safety of foods, especially if they are only margin-
ally cooked at home or by vendors. Consequently, quantifying
the adaptation effect on the survival curve is of prime impor-
tance to public health. In this work, we have demonstrated that
the WeLL model can be modified to account for heat adapta-
tion and that dynamic survival curves produced by this modi-
fied version are qualitatively consistent with those of E. coli
and L. monocytogenes as reported in the literature. With ad-
justment of its parameters, the modified model could also be
made to agree quantitatively with the experimental survival
data. This suggests that it is possible, at least in principle, to
quantify the role of adaptation in terms of the parameters of an
inactivation rate model. In the described model, these were
Timiv Kadapr and a defined by equations 8 to 10, but similar
parameters could be derived for alternative models. The inac-
tivation/adaptation model that we have chosen and used is
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perhaps the simplest possible one, since we have assumed that
Tiimic decreases linearly with the heating rate. Yet, even with
this simplistic assumption, the inactivation rate model (equa-
tion 11 or 12) had five survival/adaptation parameters, namely,
a, n, k, Tijmi» and k4., Reliable determination of all five
would require the creation of a large experimental database,
which currently does not exist. For this reason, the described
model could be evaluated only by its qualitative predictions.
However, by its parameter adjustment, the model could be
used to fit experimental survival curves in which adaptation
played a variable role, depending on the heating rate and
temperature range. This suggests that the described model
with assumed parameters can be used to simulate survival
curves of adapting pathogens under conditions that emulate
realistic scenarios such as those that exist in cooking or grilling.
Such curves could then be used in risk assessment of current
practices, could assist health authorities to determine safe
cooking conditions, and could be used to assess the potential
safety implications of emerging adaptation in existing patho-
gens or the appearance of new ones. As far as computation is
concerned, the complexity of the inactivation/adaptation rate
model (equation 11 or 12) is no hindrance to its application.
The differential equation can be rapidly solved with software
like Mathematica to produce the survival curve under practi-
cally any monotonic heating regimen. The same would proba-
bly be true if a more elaborate model were employed to
account for the adaptation phenomenon.

This communication focuses on a situation where the patho-
gen’s population, real or contemplated, is subjected to heat as
the means of its destruction, in which case the survival curve
would indicate how effective the treatment is. The methodol-
ogy, however, can be extended to other means of bacterial
inactivation or suppression, such as chemical disinfection and
refrigeration or freezing. An important issue not addressed in
this paper is the fate of adapted and unadapted cells if and
when the heating is terminated prematurely, allowing the sur-
vivors to grow. This too might be an issue of food safety
concern, but its investigation and modeling require a different
kind of experimental data and mathematical models. To ac-
count for the inactivation/adaptation kinetics, the discussion
focused on what happens at a point. However, once the kinet-
ics has been established, it could be combined with heat trans-
fer theories in order to calculate the number of surviving
pathogens in a volume of food undergoing insufficient or mar-
ginal heat treatment.
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